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Most organisms exhibit daily changes in physiology and metabolism under the control of a cell-autonomous
circadian clock. In the core clock mechanism, clock genes form a transcription factor network to generate
circadian rhythms of gene expression. Clock protein phosphorylation and histone modifications are also
important for the clock regulation. Pharmacological approaches have been making significant contribu-
tions to the clock research, for example, in characterizing the roles of protein kinases CKId, CKI3, CK2,
and GSK-3b. Recently, high-throughput circadian functional assays have been established. Chemical
biology approaches utilizing high-throughput compound screening together with RNAi-based genomic
screening will open a new way for the circadian clock field. Finding a set of compounds that potently affect
the clock function will lead to the identification of novel clock components and form the basis for therapeutic
strategies directed toward circadian disorders.
Organization of Circadian Rhythms
in Mammals
The circadian clock controls daily rhythms

in a variety of physiological processes

such as sleep/wake, body temperature,

hormone secretion, and metabolism

(Hastings et al., 2003; Green et al., 2008;

Takahashi et al., 2008; Eckel-Mahan and

Sassone-Corsi, 2009). The identification

of clock-controlled processes is expand-

ing and includes hematopoietic stem cell

release (Mendez-Ferrer et al., 2008) and

blood levels of hundreds of metabolites

(Minami et al., 2009). Many of the rhythms

persist even under constant conditions in

the absence of any external time cues.

Importantly, the intrinsic period length of

the rhythms is strictly regulated by the

circadian clock mechanism, and pertur-

bation of clock function results in a change

in period length. To synchronize with

ambient 24 hr cycles, the clock has an

ability to adjust its phase in response to

environmental time cues primarily through

light (Guler et al., 2008; Hatori et al., 2008).

The circadian clock mechanism resides

at the cellular level, and single cells exhibit

circadian rhythms in a cell-autonomous

manner (Nagoshi et al., 2005; Welsh

et al., 2005). These cellular oscillators

are organized in a hierarchy, in which

the suprachiasmatic nucleus (SCN),

located in brain, constitutes the central

circadian pacemaker controlling behav-
ioral rhythms (Hastings et al., 2003; Liu

et al., 2007a; Takahashi et al., 2008).

In contrast, peripheral clocks in other

tissues control local rhythmic outputs

such as retinal visual processing, hepatic

glucose regulation, and vascular regula-

tion of blood pressure and heart rate

(Storch et al., 2007; Lamia et al., 2008;

Wang et al., 2008). Within the SCN, the

cellular clocks are synchronized to form

a coherent oscillator through intercellular

coupling, making the SCN clock more

robust against genetic and environmental

perturbations than peripheral clocks (Liu

et al., 2007b).

Transcription Factor Networks
of the Circadian Clock
More than a dozen transcription factors

and modulators constitute transcriptional

feedback loops in the mammalian circa-

dian clock mechanism (Figure 1A) (Re-

ppert and Weaver, 2002; Gachon et al.,

2006; Liu et al., 2008; Takahashi et al.,

2008). In brief, bHLH-PAS proteins

CLOCK (or its homolog NPAS2) and

BMAL1 activate transcription of Per and

Cry genes, and PER and CRY proteins

(PER1, PER2, CRY1, and CRY2), in turn,

inhibit their own transcription. This core

loop is connected to two interlocking

loops composed of bZIP proteins (DBP,

TEF, HLF, and E4BP4) and nuclear

hormone receptors (REV-ERBa, REV-
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ERBb, RORa, RORb, and RORc). These

factors act in a combinatorial manner on

their three cognate cis-acting elements

(E box, D box, and RORE) to form

a network that generates robust rhythmic

gene expression (Ukai-Tadenuma et al.,

2008; Baggs et al., 2009). Importantly,

many clock proteins bind to histone-modi-

fying enzymes (Table 1), and histone acet-

ylation and methylation show circadian

rhythms on clock gene promoters (Etche-

garay et al., 2003, 2006; Curtis et al., 2004;

Naruse et al., 2004; Brown et al., 2005;

Ripperger and Schibler, 2006; Liu et al.,

2007c; Alenghat et al., 2008), providing

another essential layer of control.

In addition to transcriptional regulation,

posttranslational modifications of clock

proteins by phosphorylation, ubiquitina-

tion, and acetylation play important roles.

Most clock proteins undergo rhythmic

phosphorylation (Lee et al., 2001), and

many protein kinases are involved in the

clock mechanism (see below). Upon

phosphorylation of PER proteins, F box

proteins b-TrCP1 and b-TrCP2 lead to

regulated PER degradation thorough

the ubiquitin-proteasome pathway that

affects period regulation (Eide et al.,

2005; Shirogane et al., 2005; Reischl

et al., 2007; Maier et al., 2009). Another

F box protein, Fbxl3, causes proteasomal

degradation of CRY proteins, and mice

harboring a missense mutation of the
9 ª2009 Elsevier Ltd All rights reserved 921
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Fbxl3 gene show a long-

period phenotype (Busino

et al., 2007; Godinho et al.,

2007; Siepka et al., 2007).

Acetylation of BMAL1 is

regulated by CLOCK and

SIRT1 and is necessary for

normal clock oscillation (Hir-

ayama et al., 2007; Nakahata

et al., 2008). SIRT1 also

deacetylates PER2 to facili-

tate proteasomal degrada-

tion (Asher et al., 2008).

Intriguingly, SIRT1 activity

is regulated by NAD+, and

the rate-limiting enzyme in

NAD+ biosynthesis (NAMPT)

is under circadian control

via a CLOCK-BMAL1-SIRT1

circuit, forming an inter-

locked transcriptional-enzy-

matic feedback loop (Naka-

hata et al., 2009; Ramsey

et al., 2009). cAMP signaling

also constitutes a novel feed-

back circuit: the trans-

cription-based loops drive

rhythms of cAMP signal-

ing, and dynamic changes

in cAMP signaling regulate

transcriptional output cycles

(O’Neill et al., 2008).

Pharmacological
Approaches for the
Circadian Clock
Mechanism
The application of well-char-

acterized compounds has

provided important insights

into the molecular mecha-

nism of the circadian clock.

Here, we summarize protein

kinase inhibitors that have

been extensively used (Table

2). Of note, the effectiveness

of a pharmacological ap-

proach is not only limited to

kinases. For example, a set

of pharmacological studies

identified the interlocking

loops of cAMP signaling and

NAD+ metabolism (O’Neill

et al., 2008; Nakahata et al.,

2009; Ramsey et al., 2009).

CKId and CKI3

Genetic and biochemical studies beauti-

fully indicated the role of CKId/3 in the

mammalian circadian clock. Hamster tau

mutants showing a short-period behav-

ioral rhythm have a missense mutation in

the CKI3 gene (Lowrey et al., 2000), and

human familial advanced sleep phase

syndrome (FASPS) with early

sleep times and early-morn-

ing awakening is attributed

to missense mutations of the

PER2 and CKId genes (Toh

et al., 2001; Xu et al., 2005).

Mouse models harboring

these mutations show a

similar short-period pheno-

type (Xu et al., 2007; Meng

et al., 2008). Molecularly,

CKId/3 phosphorylate PER

proteins, causing proteaso-

mal degradation, and tau

and FASPS mutations lead

to higher activity of PER

degradation than wild-type,

explaining the short-period

phenotype (Gallego et al.,

2006; Vanselow et al., 2006;

Meng et al., 2008).

The functional importance

of CKId/3 was successfully

supported by the known

CKId/3 inhibitors IC261, CKI-

7, and D4476, all of which

cause period lengthening in

cultured cells (Eide et al.,

2005; Vanselow et al., 2006;

Reischl et al., 2007; Hirota

et al., 2008). Furthermore, the

CKId/3 inhibitor PF-670462

and the CKI3-selective inhib-

itor PF-4800567 have re-

cently been developed, and

their effects on the circadian

period revealed a minimal

role of CKI3 and a much

more prominent role of CKId

in period regulation (Walton

et al., 2009). This finding is

consistent with a recent study

with CKId- and CKI3-deficient

mice (Etchegaray et al., 2009).

CK2

Our own compound screen-

ing strategy in human cells

(see below) identified a CK2

inhibitor, DRB, as a long-

period acting compound

(Hirota et al., 2008). Similarly,

another CK2 inhibitor, DMAT,

causes period lengthening

(Maier et al., 2009; Tsuchiya

et al., 2009). Moreover, RNAi-

based screening approaches have also

identified the role of CK2 in the regulation

of period length (Maier et al., 2009). These

observations are consistent with previous
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Figure 1. Mammalian Circadian Clock Mechanism and
High-Throughput Circadian Assay
(A) Transcription factor feedback loops of the mammalian circadian clock. In
the core loop, heterodimers of CLOCK (or NPAS2) and BMAL1 activate tran-
scription from the E box element, and PER and CRY proteins inhibit the activa-
tion. In addition, DBP (or TEF, HLF) activates and E4BP4 represses D box-medi-
ated regulation, and ROR proteins activate and REV-ERV proteins repress
RORE-mediated regulation, forming interlocking loops. These feedback loops
generate the rhythmic expression of not only clock genes, but also of output
genes to control the circadian changes in physiology and behavior.
(B) Circadian high-throughput screening of a compound library. A clonal
reporter cell line was established by using the circadian reporter Bmal1-dLuc
(top panel). Luminescence intensity of the reporter cells showed circadian
rhythm by reflecting Bmal1 promoter activity. The rhythm was monitored in
the presence of compounds (final 7 mM). One screening of the compound
library LOPAC contained four 384-well plates, and profiles of one 384-well
plate are represented in the bottom left panel. Each horizontal raster line repre-
sents a single well, and elapsed time is plotted to the right. Luminescence
intensity data from each well are normalized for amplitude, and then indicated
by gray scale: peak is white and trough is black. Red and blue arrowheads indi-
cate the positions of long- and short-period compounds, respectively. Note
that there are many compounds that change the phase of the rhythm without
affecting the period. Bottom right panels indicate representative traces for
a long-period compound (SP600125) and a short-period compound (Indiru-
bin-30-oxime).
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Table 1. Histone-Modifying Enzymes and Cofactors/Ligands Binding to Clock Proteins

Clock Proteins Binding Partners References

Histone Acetylation

CLOCK/NPAS2-BMAL1 p300/CBP and PCAF Etchegaray et al., 2003;

Curtis et al., 2004

CRY1 mSin3B and HDAC1/2 Naruse et al., 2004

REV-ERBa NCoR and HDAC3 Alenghat et al., 2008

RORa PGC-1a, p300, and GCN5 Liu et al., 2007c

Histone Methylation

CLOCK-BMAL1 EZH2 Etchegaray et al., 2006

PER1/2 WDR5 Brown et al., 2005

Cofactors/Ligands

CLOCK/NPAS2-BMAL1 NAD Rutter et al., 2001

NPAS2 Heme Dioum et al., 2002

PER2 Heme Kaasik and Lee, 2004

CRY1/2 FAD Hitomi et al., 2009

REB-ERBa/b Heme Raghuram et al., 2007;

Yin et al., 2007

RORa Choresterol derivative Kallen et al., 2002
findings in Drosophila that decreased

activity of CK2 causes long-period behav-

ioral rhythms (Lin et al., 2002; Akten et al.,

2003). Further biochemical studies re-

vealed that CK2 phosphorylates PER2 to

regulate its stability (Maier et al., 2009;

Tsuchiya et al., 2009) and also phosphor-

ylates BMAL1 to regulate its nuclear

accumulation (Tamaru et al., 2009).

Importantly, PER2 and BMAL1 proteins

that have missense mutations at CK2-

phosphorylation sites cause abnormal

oscillation of the cellular clock, indicating

the importance of these modifications

(Maier et al., 2009; Tamaru et al., 2009;

Tsuchiya et al., 2009).

GSK-3b

Biochemical studies revealed that GSK-3b

phosphorylates PER2 for nuclear localiza-

tion (Iitaka et al., 2005), CRY2 for protea-

somal degradation (Harada et al., 2005),

and REV-ERBa for stabilization (Yin et al.,

2006). Lithium has been proposed to act

through GSK-3 inhibition (Quiroz et al.,

2004), and it robustly lengthens the circa-

dian period in a wide range of experimental

systems (Engelmann, 1987), suggesting

that GSK-3 inhibition causes period

lengthening. Consistently, reduction of

GSK-3 activity by genetic manipulation

causes period lengthening in Drosophila

(Martinek et al., 2001). However, our

chemical screening strategy identified

two compounds inhibiting both CDK and

GSK-3 (indirubin-30-oxime and kenpaul-

lone) as short-period compounds. Further
analyses with GSK-3-selective inhibitors

(Chir99021 and 1-azakenpaullone) and

RNAi-mediated knockdown revealed that

inhibition of GSK-3b clearly causes

a short-period phenotype in mammals

(Hirota et al., 2008). Similar period short-

ening was observed with newly developed

indirubin derivatives that selectively inhibit

GSK-3 (Vougogiannopoulou et al., 2008).

Because lithium affects inositol mono-

phosphatase and other phosphomonoes-

terases as well as GSK-3 (Quiroz et al.,

2004), the long-period phenotype in

mammals might be mediated by lithium-

targeted protein(s) other than GSK-3.

Identifying these additional targets is of

current interest in the field.

Other Kinases for Period Regulation

Pharmacological studies revealed that

a CDK inhibitor, roscovitine; a p38

MAPK inhibitor, SB203580; and a JNK

MAPK inhibitor, SP600125, cause period

lengthening in cultured Bulla eye (Krucher

et al., 1997), chicken pineal gland (Haya-

shi et al., 2003), and mouse SCN (Chan-

sard et al., 2007), respectively. Interest-

ingly, all of them (or the analog) were

identified as long-period compounds in

our screening with human cells (Hirota

et al., 2008). It should be noted that these

compounds possibly inhibit CKId/3 as well

as their primary targets (Hasegawa and

Cahill, 2004; Fabian et al., 2005). Addi-

tional studies are necessary to clarify the

role of CDK, p38, and JNK in the molec-

ular clockwork.
Chemistry & Biology 16, September 25, 2009
Kinases for Phase Regulation

In addition to playing a role in period re-

gulation studies, pharmacological ap-

proaches identified the involvement of

kinases in the phase-shifting mechanism.

A MEK (ERK kinase) inhibitor, U0126,

attenuates light-dependent phase delays

and advances in the SCN (Butcher et al.,

2002; Coogan and Piggins, 2003) and

serum shock-mediated rhythm induction

in cultured fibroblasts (Akashi and Nish-

ida, 2000). Similarly, a CaMKII inhibitor,

KN-62, attenuates phase delays and

advances in the SCN (Golombek and

Ralph, 1994). KN-62 also inhibits light-

dependent activation of ERK, implicating

CaMKII as an upstream regulator of ERK

(Butcher et al., 2002). A PKG inhibitor,

KT5823, attenuates phase advances, but

not phase delays (Ding et al., 1998), sug-

gesting a time-of-day-specific function

for PKG. Intriguingly, PKGII-deficient

mice show impaired phase delays but

normal phase advances (Oster et al.,

2003), contrary to what was observed in

the pharmacological study. In cultured

fibroblasts, an ALK inhibitor, SB431542,

attenuates alkaline shock-induced phase

delays, and ALK-SMAD3-Dec1 signaling

was identified as a novel clock input

pathway (Kon et al., 2008).

High-Throughput Screening: A New
Avenue for the Circadian Assay
In addition to the individual approach with

a small number of compounds, compre-

hensive screening of compound libraries

will be effective in investigating the molec-

ular clock mechanism. Advances in cell-

based circadian assays and biolumines-

cence recording technology (Nagoshi

et al., 2005; Welsh et al., 2005) enabled

us to develop a high-throughput circadian

functional assay (Hirota et al., 2008). This

system consists of luminescent reporter

cells, screening automation, and a data

analysis pipeline. We utilized the circadian

luciferase reporter Bmal1-dLuc, which

expresses the rapidly degradable lucif-

erase under the control of Bmal1 gene

promoter (Liu et al., 2008), to monitor

circadian rhythms in cultured cells

(Figure 1B, top panel). The GNF Auto-

mated Compound Profiling System (Mel-

nick et al., 2006) was applied to record

the luminescence every 2 hr over the

course of 4 days. A unique aspect of the

circadian screening is that the phenotype

is not only a simple intensity change, but
ª2009 Elsevier Ltd All rights reserved 923
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Table 2. Kinase Inhibitors Changing the Circadian Period

Compounds Primary Targets Period Phenotypes Cell Types References

Phenotypes in

U2OS Cellsa

IC261 CKId/3 Long period Rat-1 fibroblasts Eide et al., 2005 Not tested

CKI-7 CKId/3 Long period NIH 3T3 fibroblasts Vanselow et al., 2006 Not tested

D4476 CKId/3 Long period NIH 3T3 fibroblasts Reischl et al., 2007 Long period

PF-670462 CKId/3 Long period Rat-1 fibroblasts Walton et al., 2009 Not tested

PF-4800567 CKI3 No change Rat-1 fibroblasts Walton et al., 2009 Not tested

DRB CK2 Long period Aplysia eye Raju et al., 1991 Long period

DMAT CK2 Long period U2OS cells;

NIH 3T3 fibroblasts

Maier et al., 2009;

Tsuchiya et al., 2009

Not tested

Indirubin-30-oxime CDK&GSK-3 Not tested Not tested Not tested Short period

Kenpaullone CDK&GSK-3 Short period Rat-1 fibroblasts Vougogiannopoulou et al., 2008 Short period

Chir99021 GSK-3 Not tested Not tested Not tested Short period

1-azakenpaullone GSK-3 Not tested Not tested Not tested Short period

Indirubin derivatives GSK-3 Short period Rat-1 fibroblasts Vougogiannopoulou et al., 2008 Not tested

Roscovitine CDK Long period Bulla eye Krucher et al., 1997 Long period

SB203580/SB202190 p38 Long period Chicken pineal gland Hayashi et al., 2003 Long period

SP600125 JNK Long period Mouse SCN Chansard et al., 2007 Long period
a Hirota et al., 2008.
also an alternation in a repeating cycle.

Because of this uniqueness, a specialized

algorithm is necessary for identifying

the ‘‘hits.’’ We developed a curve-fitting

program, CellulaRhythm, to calculate

rhythm parameters such as period length

from large amounts of luminescence data

of 384-well plate recordings. The program

can also visualize the luminescence

rhythms as traces and heat maps for

manual inspection of the validity of the

calculated parameters. A more sophisti-

cated software, MultiCycle (Actimetrics),

has recently been developed, and it works

in a manner similar to CellulaRhythm

for the circadian parameter estimation.

Between the parameters (period, phase,

amplitude, and damping rate) we focused

on the period, because a deficiency of the

core clock mechanism can be reflected to

an alternation of the period. A more

severe phenotype is arrhythmicity, but it

is difficult to differentiate from the effect

on the general health of the cells. Impor-

tantly, the period is the most robust

parameter, stemming from the repeating

characteristics of the clock.

The success of the screening may

depend on the robustness of the system.

Especially, the cellular rhythmicity is

a key factor for the circadian screening.

Among all cell lines tested, human U2OS

cells showed prominent and highly repro-

ducible rhythmicity even in a 384-well

format. In control (untreated) conditions,
924 Chemistry & Biology 16, September 25,
more than 97% of the wells are within

the period range of mean ± 0.5 hr. We

applied this system to further dissect the

circadian clock mechanism by using

a chemical biology approach. A structur-

ally diverse chemical library, LOPAC

(Library of Pharmacologically Active

Compounds), containing 1280 pharma-

cologically active compounds was initially

used to analyze the effect on the circadian

period length in human U2OS cells

(Figure 1B, bottom panels). We identified

11 compounds causing reproducible

period changes of R 0.5 hr. Among

them, 7 compounds are protein kinase

inhibitors/activators, including roscovi-

tine, SP600125, and SB202190 (an

analog of SB203580), previously known

to change the circadian period in other

organisms (Table 2). Importantly, the

period effects of indirubin-30-oxime, ken-

paullone, and DRB predicted the novel

roles of GSK-3b and CK2 in the mamma-

lian circadian clock mechanism (Table 2).

Together, these observations demon-

strate the validity of the high-throughput

circadian assay system and the effective-

ness of chemical biology in exploring

unidentified mechanisms of the circadian

clock.

Our group and others recently devel-

oped 96- or 384-well format high-

throughput circadian assays for RNAi-

based genomic screening (Hirota et al.,

2008; Vollmers et al., 2008; Maier et al.,
2009 ª2009 Elsevier Ltd All rights reserved
2009; Zhang et al., 2009). The screening

of RNAi libraries for human kinases sug-

gested the involvement of more than

22 kinases in the cellular clock mecha-

nism (Maier et al., 2009; Zhang et al.,

2009). For example, knockdown of

MAPK8 (JNK1) causes period lengthening

(Zhang et al., 2009), which is consistent

with the effect of a JNK inhibitor,

SP600125 (Chansard et al., 2007; Hirota

et al., 2008). A combination of genomic

approaches and additional screening of

kinase inhibitor libraries will likely reveal

novel roles for many kinases in the

mammalian clockworks.

Future Outlook of the Chemical
Biology Approach for the Circadian
Clock
In the screening of limited numbers of

well-characterized compounds, many of

the hits were related to the pathways

already known to affect the circadian

clock function. Therefore, it is interesting

to expand the circadian screening for

more comprehensive, large-scale com-

pound libraries containing hundreds of

thousands of compounds. A wide varia-

tion of chemical structures has the advan-

tage of probing many classes of potential

targets, which may include not only

kinases, but also other proteins such as

histone-modifying enzymes, metabolic

enzymes, and even clock proteins. An

attractive possibility of a chemical biology
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approach will be the identification of novel

clock components that cannot be easily

achieved by forward and reverse genetic

screens because of lethality, pleiotropy,

and functional overlapping of closely

related proteins. Although our high-

throughput compound screening ap-

proach is very powerful, there are several

important points to keep in mind. First,

generally, it is technically challenging to

identify proteins specifically affected by

the novel compound. In addition, com-

pounds (even well-characterized ones)

may have multiple targets that give rise

to the observed circadian effect. After

the identification of candidate proteins,

additional studies with other compounds

targeting the same protein(s) (if available)

and/or RNAi-mediated knockdown are

necessary. The confirmation of the phe-

notype by multiple reagents may lead to

the determination of the responsible

protein(s). Simultaneous knockdown of

multiple genes will be required if there is

functional overlap, and this approach

cannot be easily achieved in RNAi

screening, which targets each gene one

by one. Second, the phenotype may arise

not only from a direct effect on the clock,

but also from indirect effects such as

alterations of general transcription/trans-

lation and the overall health of the cells.

Although it is difficult to exclude the possi-

bility of indirect effects, biochemical

studies play important roles in exploring

the mechanism of direct effects. For

example, CK2 directly phosphorylates

clock proteins for rhythm regulation (Ma-

ier et al., 2009; Tamaru et al., 2009; Tsu-

chiya et al., 2009), besides it has a general

effect on cell health and transcription (St-

Denis and Litchfield, 2009). Third, there

are potential differences in the pheno-

types between different candidate cell

lines that can be used for screening.

Given that the majority of the genes

showing circadian expression are tissue

specific (Duffield, 2003), clock modifiers

could be cell type specific. Immortalized

cell lines may have aberrant signaling

pathways that possibly affect the circa-

dian phenotype. Thus far, however,

many of the period-changing compounds

are effective in a variety of cell types,

including primary cells and even other

organisms (Table 2). In contrast, a

phase-changing compound, dexametha-

sone, is effective in peripheral tissues,

but not in the SCN because of the
absence of glucocorticoid receptor (Bal-

salobre et al., 2000). Testing the effect of

compounds in the SCN and peripheral

tissues ex vivo as well as in vivo will

provide new opportunities for common

and tissue-specific clock mechanisms.

Taken together, chemical biology will

play an increasingly important role along

with genome-wide RNAi screening in dis-

secting the molecular mechanism of the

circadian clock.

Furthermore, compound screening will

generate novel proof-of-concept probes

for manipulating clock functions in a

dose-dependent and inducible manner.

Such proof-of-concept probes will pro-

vide the chemical starting points for the

identification of small-molecule therapeu-

tics designed for circadian disorders. For

example, a novel CKId/3 inhibitor might

be useful in treating the observed short-

period phenotype caused by FASPS and

tau mutations. Interestingly, many clock

proteins bind to cofactors or ligands

(Table 1) (Rutter et al., 2001; Dioum

et al., 2002; Kallen et al., 2002; Kaasik

and Lee, 2004; Raghuram et al., 2007;

Yin et al., 2007; Hitomi et al., 2009), and

CLOCK protein has an acetyltransferase

activity (Doi et al., 2006). Compounds

affecting these activities may alter circa-

dian clock function and can be used

as specific modulators of circadian

oscillations.

Chemistry & Biology invites your

comments on this topic. Please write

to the editors at chembiol@cell.com.
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